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a b s t r a c t

Two thermo-mechanical models based on different elastic-visco-plastic constitutive laws

are applied to simulate temperature and stress development of a slice through the solidify-

ing shell of 0.27%C steel in a continuous casting mold under typical commercial operating

conditions with realistic temperature dependant properties. A general form of the transient

heat equation, including latent-heat from phase transformations such as solidification and

other temperature-dependent properties, is solved numerically for the temperature field

history. The resulting thermal stresses are solved by integrating the elastic-visco-plastic

constitutive laws of Kozlowski [P.F. Kozlowski, B.G. Thomas, J.A. Azzi, H. Wang, Simple con-

stitutive equations for steel at high temperature, Metall. Trans. 23A (1992) 903–918] for

austenite in combination with the Zhu power-law [H. Zhu, Coupled thermal–mechanical

finite-element model with application to initial solidification, PhD thesis, University of Illi-

nois, 1993] for delta-ferrite with ABAQUS [ABAQUS Inc., User Manuals v6.6, 2006] using a

user-defined subroutine UMAT [S. Koric, B.G. Thomas, Efficient thermo-mechanical model

for solidification processes, Int. J. Num. Meth. Eng. 66 (2006) 1955–1989], and the Anand law

for steel [L. Anand, Constitutive equations for the rate dependant deformation of metals at

elevated temperatures, ASME J. Eng. Mater. Technol. 104 (1982) 12–17; S.B. Brown, K.H. Kim,

L. Anand, An internal variable constitutive model for hot working of metals, Int. J. Plasticity

6 (1989) 95–130] using the integration scheme recently implemented in ANSYS [ANSYS Inc.,

User Manuals v100, 2006]. The results from these two approaches are compared and CPU

times are benchmarked. A comparison of one-dimensional constitutive behavior of these

laws with experimental tensile test data [P.J. Wray, Plastic deformation of delta-ferritic iron

at intermediate strain rates, Metall. Trans. A 7A (1976) 1621–1627; P.J. Wray, Effect of carbon

content on the plastic flow of plain carbon steel at elevated temperatures, Metall. Trans.

A 13 (1982) 125–134] and previous work [A.E. Huespe, A. Cardona, N. Nigro, V. Fachinotti,
Visco-plastic constitutive models of steel at high temperature, J. Mater. Process. Technol. 102

s rea
(2000) 143–152] show
approach is much more

studied here are useful fo

using convenient comme
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Nomenclature

a Anand strain rate sensitivity of hardening or
softening

A surface (m2)
AA Anand pre-exponential factor (s−1)
Ah convection-prescribed surface (m2)
Aq flux-prescribed surface (m2)
AT temperature-prescribed surface (m2)
Au displacement-prescribed surface (m2)
A˚ traction-prescribed surface (m2)
b volumetric force vector (N)
cp specific heat (J/kg K)
D fourth order elasticity tensor (N/m2)
E elastic modulus (N/m2)
f visco-plastic law function (s−1)
fc empirical constant in Kozlowski III law

(MPa−f3 s−1)
f1 empirical constant in Kozlowski III law (MPa)
f2 empirical constant in Kozlowski III law
f3 empirical constant in Kozlowski III
fıc empirical constant in enhanced power delta

law
h general film coefficient (W/m2 K)
ho Anand hardening/softening constant (N/m2)
H enthalpy (J/kg K)
Hf latent heat (J/kg K)
I second order identity tensor
I fourth order identity tensor
k thermal conductivity (W/m K)
kB bulk modulus (N/m2)
L characteristic axial casting length (m)
m Anand strain rate sensitivity of stress; empiri-

cal constants used power delta law
n Anand strain rate sensitivity of saturation;

empirical constants used power delta law
n surface unit vector
q̂ prescribed heat flux (W/m2)
Q, QA activation energy constants (K)
s Anand deformation resistance (N/m2)
s̃ Anand saturation value for s (N/m2)
so Anand initial value for s (N/m2)
T temperature (◦C, K)
Tinit initial temperature (◦C)
Tliq liquidus temperature (◦C)
Tsol solidus temperature (◦C)
T0 reference temperature (◦C)
T∞ ambient temperature (◦C)
TLE thermal linear expansion
T̂ prescribed BC temperature (◦C)
u, d displacement vector (m)
V volume (m3)
Vc casting speed (m/min)
x position vector (m)
z distance below meniscus (m)

Greek letters
˛ coefficient of thermal expansion (◦C−1)
ıij Kronecker’s delta

� total strain tensor
�el elastic strain tensor
�ie inelastic strain tensor
�̇ total strain rate tensor (s−1)
�̇el elastic strain rate tensor (s−1)
�̇ie inelastic strain rate tensor (s−1)
˙̄εie equivalent inelastic strain (s−1)
�th thermal strain tensor
�̇th thermal strain rate tensor (s−1)
� shear modulus (N/m2)
� Anand multiplier of stress
� density (kg/m3)
� stress tensor—small strain formulation (N/m2)
�′ deviatoric stress tensor (N/m2)
�̄ equivalent stress (N/m2, MPa)
�* trial stress tensor (N/m2)
� surface traction vector (N/m2)

%C percentage carbon in the steel

1. Introduction

Many manufacturing and fabrication processes such as
foundry shape casting, continuous casting and welding have
common solidification phenomena. Probably one of the most
important and complex among these is continuous casting,
which is used to produce over 90% of the steel in the world
today. Although the quality of continuous-cast steel is con-
stantly improving, there is always incentive to lower the
amount of defects and to improve productivity. Many of the
more important defects that plague the continuous casting
process are cracking problems. Many of these cracking prob-
lems are related to mismatch between solidification shrinkage
and mold taper, that causes interfacial gaps and reduced heat
flow between the shell and mold, leading to locally hot and
thin parts of shell. These often cause transverse stresses, lead-
ing to longitudinal cracks at the meniscus, and breakouts due
to ferrostatic pressure from the liquid phase applied to the
newly solidified shell at mold exit (Li and Thomas, 2002a,b).

Many of these phenomena occur during the early stages of
solidification in the mold. Accurate determination of temper-
ature, deformation and stress distributions during this time
is important for correct prediction of the taper to avoid these
cracking problems, in addition to understanding other cracks,
surface defects, and quality problems in the continuous cast-
ing of steel and other processes.

The high cost of plant experiments under the harsh
operating steel plant conditions makes it appropriate to
use all available methods in simulating, optimizing, and
designing this process. Although continuous casting has
been subject to many computational models, the complex-
ity of the phenomena, including temperature, strain-rate,
and phase-transformation-dependent constitutive behavior,
make it difficult to model accurately. Improvements to the pro-

cess to avoid cracks, such as optimizing mold taper designs,
demand quantitative models that can make accurate predic-
tions of thermal stress and strain during solidification.
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The constitutive models used in previous work to investi-
gate thermal stresses during continuous casting first adopted
simple elastic–plastic laws (Weiner and Boley, 1963; Grill et al.,
1976; Wimmer et al., 1996). Later, separate creep laws were
added (Rammerstrofer et al., 1979; Kristiansson, 1984). With
the rapid advance of computer hardware, more computation-
ally challenging elastic-visco-plastic models have been used
(Zhu, 1993; Koric and Thomas, 2006; Boehmer et al., 1998;
Farup and Mo, 2000; Li and Thomas, 2005; Risso et al., 2006)
which treat the phenomena of creep and plasticity together
since only the combined effect is measurable. Most previ-
ous models adopt a Langrangian description of this process
with a fixed mesh, although an alternative mechanical model
based on Eularian–Langrangian description has been pro-
posed recently (Huespe et al., 2000; Risso et al., 2006). Similarly,
the integration of visco-plastic laws ranges from easy-to-
implement explicit methods (Morgan et al., 1978; Lewis et
al., 1996), to robust but complex implicitly based algorithms
(Zhu, 1993; Koric and Thomas, 2006; Huespe et al., 2000; Li and
Thomas, 2005).

It is a considerable challenge to apply these previous in-
house FE models to solve realistic problems, which demand
the incorporation of other important phenomena such as con-
tact, thermal–mechanical coupling, and three-dimensional
complexities. On the other hand, the easy-to-use commer-
cial finite-element packages are now fully capable of handling
these related phenomena, having rich element libraries, fully
imbedded pre- and post-processing capabilities, advanced
modeling features such as contact algorithms, and can take
full advantage of parallel-computing capabilities.

The work of Koric and Thomas (2006, 2007) and Koric et
al. (2007) implemented a robust local visco-plastic integration
schemes from an in-house code CON2D (Zhu, 1993; Li and
Thomas, 2002a,b, 2005) into the commercial finite element
package ABAQUS via its user defined material subroutine
UMAT including the special treatment of liquid/mushy zone.
This opened the door for the realistic computational mod-
eling of complex steel solidification processes with ABAQUS
(Koric et al., 2007; Koric and Thomas, 2007) based on the
Kozlowski III visco-plastic law for austenite, and the Zhu
enhanced power law for delta-ferrite phase (Zhu, 1993). The
thermal–mechanical predictions of this model were based on
measured tensile-test and creep data and have been rigorously
validated against analytical solutions, a reliable in-house code
(Koric and Thomas, 2006), and with plant measurements
(Koric et al., 2007).

Another finite-element commercial package ANSYS has
recently implemented a different visco-plastic material, origi-
nally proposed by Anand (1982) and Brown et al. (1989) for the
hot working of metals. Huespe et al. (2000) compared these two
visco-plastic constitutive models of steel and concluded that
the Kozlowski model was slightly more accurate and conve-
nient than the Anand model. However, that study considered
only one steel carbon content, used an in-house code with lim-
ited features and availability, and did not compare execution
times.
The object of this article is to compare temperature and
stress results from the Anand material model in ANSYS
against those of the Kozlowski/Zhu material model using
ABAQUS. In this work, a real world simulation of a typical con-
e c h n o l o g y 1 9 7 ( 2 0 0 8 ) 408–418

tinuous casting process is performed with both codes using
realistic temperature-dependant properties on a simple slice
domain. To enable a fair comparison of the crucial thermo-
mechanical results developing during steel solidification using
the different constitutive models, other important phenom-
ena such as complex mold geometries, contact between the
mold and strand with gap dependant conductivity, ferrostatic
pressure, mold taper etc. are avoided in this paper, although
they are being modeled with both of these general purpose
codes in related work.

2. Thermal governing equations

Using an uncoupled approach, the heat conduction equation
is solved first in a fixed-mesh domain that initially contains
only liquid. The resulting temperature solution is then input
to the subsequent mechanical analysis. The local form of the
transient energy equation is given in Eq. (1) (Lewis et al., 1996):

�

(
∂H(T)

∂t

)
= ∇ · (k(T)∇T) (1)

along with boundary conditions:

Prescribed temperature on AT : T = T̂(x, t);

prescribed surface flux on Aq : (−k∇T) · n = q̂(x, t);

surface convection on Ah : (−k∇T) · n = h(T − T∞) (1a)

where � is the density, k the isotropic temperature dependant
conductivity, H is temperature dependant enthalpy, which
includes the latent heat of solidification. T̂ is a fixed temper-
ature at the boundary AT, q̂ the prescribed heat flux at the
boundary Aq, h the film convection coefficient prescribed at
the boundary Ah where T∞ is the ambient temperature, and n
is the unit normal vector of the surface of the domain.

3. Mechanical governing equations

The strains which dominate thermo-mechanical behavior
during solidification are on the order of only a few percent, or
cracks will form (Thomas et al., 1986). Thus, the assumption
of small strain is adopted in this work. Several previous solidi-
fication models (Zhu, 1993; Kristiansson, 1984; Li and Thomas,
2005; Risso et al., 2006) confirm that the solidified metal under-
goes only small deformation during initial solidification in the
mold. With displacement spatial gradient, ∇u = ∂u/∂x being
small, ∇u:∇u ≈ 1 and the linearized strain tensor is thus (Mase
and Mase, 1999)

� = 1
2

[∇u + (∇u)T] (2)

where Cauchy stress tensor is identified with the nominal

stress tensor �, and b is the body force density with respect to
initial configuration:

∇ · �(x) + b = 0 (3)
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The boundary conditions are:

= û on Au; � · n = � on A˚ (3a)

here prescribed displacements û on boundary surface por-
ion Au, and boundary surface tractions � on portion A˚ define
quasi-static boundary value problem. The rate representa-

ion of total strain in this elastic-visco-plastic model is given
y

˙ = �̇el + �̇ie + �̇th (4)

here �̇el, �̇ie, �̇th are the elastic, inelastic (plastic + creep), and
hermal strain rate tensors, respectively. Stress rate �̇ depends
n elastic strain rate, and for a linear isotropic material with
egligible large rotations, is given by Eq. (5) in which “:” repre-
ents inner tensor product.

˙ = D : (�̇ − �̇ie − �̇th) (5)

is the fourth order isotropic elasticity tensor given by Eq. (6):

= 2�I +
(

kB − 2
3

�

)
I ⊗ I (6)

Here � and kB are the shear modulus and bulk modu-
us, respectively, and are in general functions of temperature,

hile I, I are fourth and second order identity tensors and “⊗”
enotes outer tensor product.

.1. Visco-plastic strain models

isco-plastic strain includes both strain-rate independent
lasticity and time dependant creep. Creep is significant at
he high temperatures of the solidification processes and is
ndistinguishable from plastic strain (Li and Thomas, 2005).
ozlowski et al. (1992) proposed a unified formulation with the

ollowing functional form to relate inelastic strain to stress,
emperature, strain rate, and carbon content in the austenite
hase of steel:

˙̄
ie = f (�̄, T, ε̄ie, %C) (7)

he equivalent inelastic strain-rate ˙̄εie is a function of equiv-
lent stress �̄, temperature T, equivalent inelastic strain ˙̄εie,
nd steel grade defined by its carbon content %C:

¯ =
√

3
2

�′
ij
�′

ij
(8)

′ is a deviatoric stress tensor defined in Eq. (9):
′
ij = �ij − 1

3
�kkıij (9)

The particular model below was chosen to match ten-
ile test measurements of Wray (1982) and creep test data
f Suzuki et al. (1988) for plain carbon steel in the austenite
hase:
h n o l o g y 1 9 7 ( 2 0 0 8 ) 408–418 411

˙̄εie = fC(�̄ − f1ε̄ie|ε̄ie|f 2−1)
f 3

exp
(

−Q

T

)
, where Q = 44, 465,

f1 = 130.5 − 5.128 × 10−3T, f2 = −0.6289 + 1.114 × 10−3T,

f3 = 8.132 − 1.54 × 10−3T,

fC = 46, 550 + 71, 400(%C) + 12, 000 (%C)2 (10)

Q is activation constant, and f1, f2, f3, fC, are empirical func-
tions of temperature or steel-grade, equivalent stress �̄ is
given in MPa, and temperature T in K.

To simulate the delta-ferrite phase of steel, a power-
law constitutive model, was proposed by Zhu (1993) which
generates the much higher creep rates experienced in this
body-centered cubic phase, relative to the strong, face-
centered cubic austenite phase. This constitutive model, given
in Eq. (10a) was based on tensile test measurements by Wray
(1976). It is applied in the solid whenever the volume frac-
tion of ferrite is more than 10%. Otherwise, Eq. (10) is applied.
This simple rule was preferred over a mixture rule based on
phase fraction, because creep in the delta-ferrite phase dom-
inates the mechanical behavior if this phase is continuous.
The volume fractions of each phase are calculated from an
iron–carbon phase diagram adjusted for other alloying com-
ponents (1.52% Mn, 0.34% Si, 0.015% S, and 0.012% P), as
implemented in the in-house code, CON2D (Li and Thomas,
2005):

˙̄εie = 0.1

∣∣∣∣ �̄

fıc(T/300)−5.52(1 + 1000ε̄ie)m

∣∣∣∣
n

,

where fıc = 1.3678 × 104(%C)−5.56×10−2
,

m = −9.4156 × 10−5T + 0.3495,

n = 1

1.617 × 10−4T − 0.06166
(10a)

Again equivalent stress �̄ is given in MPa, and temperature
T in K in Eq. (10a).

A different visco-plastic model for steel at high tempera-
ture was proposed by Anand (1982) and Brown et al. (1989).
Like the Kozlowski model, there is no explicit yield surface,
as the instantaneous material response depends only on its
current state. A single scalar variable s, called the deforma-
tion resistance, is used to represent the isotropic resistance to
inelastic strain. The constitutive equation is given in Eq. (11):

˙̄εie = AA exp
(

−QA

T

)[
sinh

(
�

�̄

s

)]1/m

(11)

The evolution equations for s are

ṡ =
(

h0

∣∣∣1 − s

s∗

∣∣∣a

sign
(

1 − s

s∗

))
˙̄�ie (12)
with

s∗ = s̃

[
˙̄εie

AA
exp

(
QA

T

)]n

(13)
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Table 1 – Parameters used in the Anand material model
for 1030 steel

Parameter Value

so (MPa) 43
QA (K) 32514
A 1.E11
� 1.15
m 0.147
ho (MPa) 1329
s̃ (MPa) 147.6

n 0.06869
a 1

where s is the deformation resistance (Pa), QA the activation
energy over gas constant for Anand’s material (K), AA the pre-
exponential factor (s−1), � the multiplier of stress, m the strain
rate sensitivity of stress, ho the hardening/softening constant
(Pa), s̃ the saturation value for s (Pa), n the strain rate sensitivity
of saturation, and a is the strain rate sensitivity of hardening
or softening.

In addition, an initial value for deformation resistance so

must be defined.
Using the experimental data of Wray (1982) and Anand

(1982) estimated the parameters for carbon steel in a car-
bon content range 0.05–0.5%C. The current Anand model
implemented in ANSYS has been slightly modified from the
original with the addition of a hyperbolic sine functional
form of the constitutive equation and exponential harden-
ing behavior. The standard material constants used for this
model in this work are listed in Table 1. Brown et al. (1989)
proposed the initial value for deformation resistance so to
depend on temperature, while the initial work of Anand
(1982) defined so to vary in the range of 35–52 MPa, depend-
ing on both temperature and strain rate. No temperature
or composition dependence of any of these model parame-
ters is currently available in ANSYS, so the average value of
43 MPa is chosen for so following the work of Huespe et al.
(2000).

The Kozlowski model, on the other hand, has no adjustable
parameters. For lower-carbon steels involving delta-ferrite,
however, the Kozlowski model for austenite should be com-
bined with a separate power law Eq. (10a) for temperatures at
which delta-ferrite is present. Details of the complete phase-
dependent constitutive equations are given elsewhere (Zhu,
1993; Lush et al., 1989).

The steels considered in this work are assumed to harden
isotropically, so the von Mises loading surface, associated plas-
ticity, and normality hypothesis of the Prandtl–Reuss flow law,
Eq. (14) (Mendelson, 1983) is used to calculate visco-plastic
strain components:

(ε̇ie)ij = 3
2

˙̄εie

�′
ij

�̄
(14)

3.2. Thermal strain
Thermal strains �th arise due to volume changes caused
by both temperature differences and phase transforma-
tions, including solidification and solid-state phase changes
e c h n o l o g y 1 9 7 ( 2 0 0 8 ) 408–418

between crystal structures, such as austenite and ferrite:

(εth)ij =
∫ T

T0

˛(T) dTıij (15)

where ˛ is the temperature dependant coefficient of thermal
expansion, T0 an important reference temperature and ıij is
Kronecker’s delta. The choice of T0 is arbitrary, but it signifi-
cantly affects the associated ˛ function.

4. Local Time Integration of the inelastic
constitutive models

Owing to the highly strain-dependant inelastic responses, a
robust integration scheme is required to integrate either the
Kozlowski or Anand equations over a generic time increment
�t. The system of ordinary differential equations defined at
each material point by the Kozlowski model Eq. (10) or the Zhu
power law model Eq. (10a) is converted into two “integrated”
scalar equations by the Euler backward method and then
solved using a special bounded Newton–Raphson method
(Zhu, 1993; Koric and Thomas, 2006; Lush et al., 1989). Details
of this local integration scheme can be found at Zhu (1993),
Koric and Thomas (2006) and Lush et al. (1989) along with the
derivation of the Jacobian consistent with this method.

Similarly, ANSYS uses the Euler-backward scheme to inte-
grate Eqs. (11) and (12) (ANSYS Inc., 2006). The details of this
local integration scheme that is built into ANSYS and specially
optimized for the Anand model are not publicly available.

The solution obtained from this “local” integration step
from all material (gauss) points is used to update the global
finite-element equilibrium equations, which are solved using
the Newton–Raphson based nonlinear finite-element proce-
dures in ABAQUS or ANSYS (ABAQUS Inc., 2006; ANSYS Inc.,
2006).

5. Comparison of constitutive models with
experimental data

The two constitutive models were first evaluated for spatially
uniform conditions, by simply integrating the equations with
a local method. Fig. 1 compares the calculated tensile curves
with experimental data of Wray (1982) for different carbon
contents. The Kozlowski model correctly captures the slight
softening effect of increasing carbon content for this fully
austenitic condition. Lacking any dependency on steel grade,
the Anand model is represented with a single curve, which
underestimates stress for the low and mild carbon content
steels, and underestimates work hardening, as indicated by
the flatness of the curves.

Fig. 2 compares the stresses at 5 pct strain measured by
Wray (1976) at different temperatures to those predicted with
the Kozlowski austenite model or Zhu power law for delta-
ferrite and the Anand model. Both model systems exhibit the

correct drop in stress when integrated at lower constant strain
rate. The experiments and Kozlowski/Zhu model predictions
in this figure both show that delta-ferrite, which forms in low
carbon steels at higher temperatures, is much weaker than
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Fig. 1 – Tensile stress curves calculated with Kozlowski and
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nand models for various carbon content and compared to
ray experimental data.

ustenite. This important effect of phase explains the lower
tress measured in ferritic Si-steel at lower temperature, while
he ultra-low carbon steel and Si-steel show similar stresses in
he fully ferritic region above 1400 ◦C. The Anand model fails
o capture this significant change in mechanical behavior of
ow carbon steel shells containing delta-ferrite.

For the 1030 steel, Huespe et al. (2000) showed that the
ozlowski model has a generally better fit with available
xperimental data of Suzuki et al. (1988), while the Anand
odel showed a slightly better agreement with experimen-

al data of Wray (1982). However, due to the uncertainty of so

nd lack of dependency on carbon content %C in the Anand
odel, it was concluded in that work that the Kozlowski model

s better. A recent survey of various constitutive models of steel
t elevated temperature conducted by Pierer et al. (2005) has
ound that the Kozlowski model produces the closest match
ith experimental steel solidification force–elongation curves.
dditional information on these models, including further

omparison with experimental measurements can be found
n the following papers: Kozlowski et al. (1992), Anand (1982),
rown et al. (1989), Huespe et al. (2000), Pierer et al. (2005) and
eng et al. (2004).

ig. 2 – Constitutive model comparison with Wray
xperimental data for low carbon steel, showing
echanically weaker delta-ferrite phase.
Fig. 3 – Solidifying slice.

6. Analysis of solidifying shell in
continuous casting mold

In many solidification processes, such as the continuous cast-
ing of steel, one dimension of the casting is much longer than
the others, and is otherwise unconstrained. In this case, it
is quite reasonable to apply a condition of generalized plane
strain in the long (axial) direction (z), and to solve a two-
dimensional thermal stress problem in the transverse (x–y)
plane. This condition reasonably allows a two-dimensional
transient mechanical computation in the plane section to
produce the complete three-dimensional stress state in the
casting. While generalized-plane-strain elements are avail-
able in ABAQUS, the current implementation of so-called
visco elements, which only works with Anand’s material in
ANSYS, does not support generalized plane strain. Therefore,
this comparative investigation employs a simple plane-strain
implementation in both codes.

The domain adopted for this problem is a thin slice through
the shell thickness given in Fig. 3 with the casting condition
listed in Table 2.

For the heat conduction computation, the high Peclet num-
ber (VcL�cp/k) associated with the high casting speed (Vc)
and low thermal conductivity (k) of steel continuous casting
makes axial conduction negligible relative to axial advection
(Meng and Thomas, 2003; Li and Thomas, 2005). Thus, the
same simple slice domain that moves with the strand in
a Langrangian frame of reference can be used for both the

heat transfer and mechanical computations. Fig. 4 shows the
domain and boundary conditions for both models. An instan-
taneous interfacial heat flux profile that varies with time down
the mold according to mold thermocouple measurements (Li

Table 2 – Casting conditions

Parameter Value

Steel casting speed (m/min) 2.2
Working mold length (mm) 670
Carbon content 0.27%C
Initial temperature (◦C) 1540
Liquidus temperature (◦C) 1500.70
Solidus temperature (◦C) 1411.79
Ref. temperature for thermal expansion (◦C) 1540
Density (kg/m3) 7400
Poisson’s ratio 0.3
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Fig. 4 – Mechanical and thermal finite element domains.

work, 7400 kg/m3, in order to maintain constant mass.
The temperature-dependant coefficient of thermal expan-

sion ˛(T) is calculated from the thermal linear expansion
function TLE (Li and Thomas, 2005) with a reference tempera-
Fig. 5 – Instantaneous interfacial heat flux.

and Thomas, 2005) is given in Fig. 5, and is applied at the left
edge of the domain. Due to the large width (x) of the casting
compared to the thickness (y) of this simple domain, a sec-
ond generalized plane strain state is applied in the y direction.
This condition was imposed by coupling the displacements
of all nodes along the bottom edge of the slice domain. This
was accomplished using the *EQUATION option in ABAQUS
(ABAQUS Inc., 2006), and the CP command in ANSYS (ANSYS
Inc., 2006). The normal (x) displacement of all nodes along the
bottom edge of the domain is fixed to zero. Tangential stress
was left equal zero along all surfaces. Finally, the ends of the
domain are constrained to remain vertical, which prevents any
bending in the xy plane.

Temperature-dependent properties were chosen for
0.27%C plain mild-carbon steel with Tsol = 1411.79 ◦C and
Tliq = 1500.72 ◦C (solidus and liquids temperatures). The
enthalpy curve used to relate heat content and temperature
in this study, H(T), is shown in Fig. 6. It was obtained by inte-
grating the specific heat curve fitted from measured data of
Pehlke et al. (1982). While this enthalpy data is input directly

into ANSYS, ABAQUS tracks the latent heat Hf = 257,867 J/kg
separately from the specific heat cp, which is found from the
slope of this H curve, except in the solidification region, where
Fig. 6 – Enthalpy for 0.27%C plain carbon steel.

cp is found from Lewis et al. (1996) as follows:

cp = dH

dT
− Hf

(Tliq − Tsol)
(16)

The temperature dependent conductivity function for
0.27%C plain carbon steel is fitted from data measured by
Harste (1989), and is given in Fig. 7. The conductivity increases
in the liquid region by a factor of 6.65 to partly account for
the effect of convection due to flow in the liquid steel pool
(Huang et al., 1992). Density was assumed constant at this
Fig. 7 – Thermal conductivity for 0.27%C plain carbon steel.
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Fig. 8 – Coefficient of thermal linear expansion for 0.27%C
plain carbon steel, reference temperatures: T0 = 1540 and
1411.7 ◦C.
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parameters (H and k in ANSYS; Tsol, Tliq, Hf, and k in ABAQUS),
this shows that both sets of thermal material properties are
consistent. Furthermore, the two numerical implementations
are equivalent.
Fig. 9 – Elastic modulus for plain carbon steel.

ure of T0 = 1540 ◦C, and is given in Fig. 8. An alternative, exactly
quivalent thermal-expansion function is included in this fig-
re using a reference temperature of T0 = Tsol = 1411.79 ◦C.

Poisson ratio is 0.3 constant. Elastic modulus E generally
ecreases as the temperature increases, although its value
t very high temperatures is uncertain. The temperature-
ependent elastic modulus curve used in this model was fitted
rom measurements from Mizukami et al. (1977), as shown
n Fig. 9. The liquid and mushy zone is modeled by lowering
lastic modulus by three orders of magnitude. This method
s easy to apply but cannot model the generation of inelastic
train and stress in the liquid/mushy zone which is crucial for
ot tearing prediction (Li and Thomas, 2005). It also some-

imes introduces a numerical ill conditioning of the global
tiffness matrix after finite-element assembly which might be
problem for sparse linear solvers. Other more sophisticated

iquid/mushy models have been proposed by Zhu (1993), Li and

homas (2005), and Koric and Thomas (2006).

A 20 s simulation was performed, which corresponds to a
70 mm long shell of steel cast at a casting speed of 2 m/min.
he heat transfer analysis is run first to get the temporal and
Fig. 10 – Temperature distribution along the solidifying
slice in continuous casting mold.

spatial temperature field. Stress analysis is then run using
this temperature field. The domain used in both codes has
a single row of 300 plane 4-node elements in both thermal
and stress analysis. A formal study of mesh and time incre-
ment refinement was conducted by Zhu (1993), which shows
that the 300-node mesh used here is more than sufficient to
achieve accuracy within 1% error with a fixed time increment
of 0.01 s (1000 time increments per 10 s) compared to the ana-
lytical solidification solution for the elastic-perfectly plastic
material (Weiner and Boley, 1963).

7. Results and discussion

The temperature results predicted with ABAQUS and ANSYS
are in excellent agreement, as shown in Figs. 10 and 11. Con-
sidering that the two codes employ different forms of thermal
Fig. 11 – Temperature history for the surface material point
and the material point 5 mm from the surface.
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Fig. 13 – Lateral (y) stress distribution along the solidifying
slice in continuous casting mold.
Fig. 12 – Lateral shrinkage history of the bottom edge
nodes.

The temperature gradient through the shell is almost lin-
ear from near the solidification front to the cooled surface
and it gradually drops as solidification proceeds. The typi-
cal cooling histories for two material points in Fig. 11 each
show the classic drop in cooling rate as each point beneath
the surfaces passes through the “mushy region” between the
solidus and liquidus temperatures. The solidification front
grows roughly parabolically with time, which matches both
theoretical expectations and plant measurements (Meng and
Thomas, 2003).

The total lateral (y) shrinkage strain history given in Fig. 12
for the bottom edge nodes also shows a very good agreement
between two models. This shrinkage displacement is the same
across the entire domain, and shows the decrease in the aver-
age width of the solidifying shell, which is accommodated in
practice by tapering the mold walls. This result represents a
prediction of ideal taper, and shows that more taper is needed
near the beginning of solidification in the top region of the
mold. This calculation is relatively insensitive to the constitu-
tive model, because the shrinkage is predominantly thermal
strain, and can be reasonably approximated by simple thermal
strain calculations (Thomas and Ojeda, 2003).

The stress predictions, given in Figs. 13 and 14 match rea-
sonably well at early times, but start to diverge with increasing
time. For both models, the faster cooling of the interior relative
to the surface region naturally causes interior contraction and
tensile stress, which is offset by compression at the surface.
The Anand model underpredicts both the compressive surface
stress and the internal tensile peak. This finding is consis-
tent with the stress underprediction from Fig. 1 as well as
with the axial stress results from the in-house code of Huespe
et al. (2000) for round billet casting under different condi-
tions. These results indicate the earlier observed differences
between the two constitutive models, which increase with
decreasing temperature. Qualitatively, however, both models

reasonably predict thermal–mechanical behavior during solid-
ification, and can provide insights into casting processes.

Finally, the wall clock times of the two codes in this work
are comparable. The Anand model with ANSYS was faster, tak-
Fig. 14 – Lateral (y) stress history for the surface material
point and the material point 5 mm from the surface.

ing 3.5 min, versus 5.5 min for the Kozlowski/Zhu model with
ABAQUS. Both simulations were performed on the IBM p690
platform with a Power 4, 1.3 GHz CPU.

8. Conclusions

Temperature and stress in a solidifying slice through a
realistic steel continuous caster are predicted with two dif-
ferent elastic-visco-plastic constitutive laws for plain-carbon
steel using two commercial finite-element programs. The
Anand law is integrated by the Euler-Backward method built
into ANSYS. The results are compared with the Kozlowski
model for austenite combined with the Zhu power-law model
for delta-ferrite, integrated in ABAQUS with a local-global
integration scheme implemented via a user-defined UMAT
subroutine.
While the temperature and total strain results are in excel-
lent agreement, the Anand model under-predicts the peak
stresses in both compression and tension. The results are con-
sistent with the tensile stress comparisons in Fig. 1 as well as
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he findings of previous work (Huespe et al., 2000) using an
n-house code. The Anand model with ANSYS qualitatively
redicts the expected thermal–mechanical behavior with
he least CPU time. However, the Kozlowski/Zhu model has
een validated with experimental measurements, accurately

ncorporates steel grade dependency, needs no adjustable
arameters to be defined, and can utilize the generalized
lane-strain condition in ABAQUS. In addition, only the
ozlowski/Zhu model correctly predicts the weakening behav-

or of delta-ferrite, which forms near the solidification front in
ow carbon steels.

In conclusion, both ANSYS and ABAQUS enable modeling
f complex realistic casting phenomena including variable

nterfacial gap heat transfer, ferrostatic pressure from the
iquid, thermo-mechanical contact between the mold and
trand, mold taper, and complex three-dimensional geometric
eatures. Two efficient and convenient approaches are avail-
ble to investigate thermal–mechanical behavior involving
he solidification of steel, especially while in the austenite
hase.
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